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A method for approximately solving magnetic differential equations is described. The approach is to
include a small diffusion term to the equation, which regularizes the linear operator to be inverted.
The extra term allows a “source-correction” term to be defined, which is generally required in order
to satisfy the solvability conditions. The approach is described in the context of computing the
pressure and parallel currents in the iterative approach for computing magnetohydrodynamic
equilibria. © 2010 American Institute of Physics. �doi:10.1063/1.3506821�

A magnetic differential equation1 is an equation of the
form

B · �f = s , �1�

where B is a given magnetic field, s is an arbitrarily pre-
scribed source term, and f is a single valued function that is
to be determined. This equation describes how f changes
while traversing along a field line. Toroidal magnetic fields
are analogous to 1 1

2 dimensional Hamiltonian systems2 and
consequently, in the absence of a continuous symmetry, are
generally chaotic.3 This paper shall suggest numerically trac-
table techniques for solving this equation to arbitrary accu-
racy.

Equations of this type arise in several contexts in plasma
physics. The electric field that satisfies Ohm’s law,
E+v�B=�j, for a given steady-state magnetic field, so that
E=−��, is given by B ·��=−�j ·B. In the solution to the
ideal magnetohydrodynamic �MHD� equilibrium equation,
�p= j�B, magnetic differential equations arise for
the pressure, B ·�p=0, and the parallel current,
B ·��=−� · �B��p /B2�, where �= j ·B /B2 and we have as-
sumed � · j=0. We will discuss these latter two equations in
more detail below.

Several problems arise when solving equations of this
type. The first problem is that, in toroidal geometry, if f is to
be single valued then the source term must satisfy certain
solvability conditions:4 if one were to integrate Eq. �1� along
a closed field line �i.e., a periodic orbit�, we must have
�sdl /B=0. This condition generally will not be satisfied for
arbitrary s. A robust method for solving Eq. �1� should not be
sensitive to small violations of the solvability conditions. In
the approach adopted below, a “source-correction” term �s
will be computed so that s+�s does satisfy the solvability
conditions.

The second, related problem is that the B ·� is patho-
logically singular when the field is chaotic. Magnetic differ-
ential equations are singular on periodic orbits, and periodic
orbits densely populate chaotic fields. One could imagine an
approach that explicitly located periodic orbits, and either
included a term to cancel �sdl /B=0, or avoided the periodic
orbits altogether. However, it is not always easy to locate
periodic orbits in chaotic fields, and regularizing and invert-

ing the B ·� operator by this approach is tantamount to re-
solving the infinitely complicated, fractal structure of the
magnetic field.5 This is no easy task, and is unlikely to lead
to a reliable numerical algorithm.

The third problem is that the solution is arbitrary to
within a function that is constant along a field line: if f is a

solution then so is f̄ = f +� for any � that satisfies B ·��=0.
In the case of integrable fields, where each field line lies on
a toroidal surface �i.e., a flux-surface� and the flux-surfaces
themselves are continuously nested, the integration constant
may be an arbitrary surface function, �=��s� where s labels
flux-surfaces. In the chaotic regions however, where the field
lines associated with the unstable manifolds of the unstable
periodic orbits seem to wander about randomly, and where
there may exist some surviving irrational flux-surfaces �so-
called Kolmogorov, Arnold, and Moser3 �KAM� surfaces�
and cantori,6 and where there may exist small island chains
about the stable periodic orbits,7 it is not at all obvious how
one can choose a nontrivial integration function so that f will
be continuous.

The approach adopted here is to include a nonsingular,
linear operator to the left hand side of Eq. �1�. Consider the
advection-diffusion equation

B · �f + D � · ��f = s , �2�

where D is assumed to be a small constant and
��f ��f −bb ·�f . Provided D�0, the operator L�B ·�
+D� ·�� is nonsingular and Lf =s is readily inverted. An
intuitive understanding of why this is so is to note that the
� ·�� operator contains higher order derivatives than B ·�.
Wherever f tends to be singular, the higher order derivatives,
and thus the regular diffusion process, will dominate.

As with all differential equations, to obtain a unique so-
lution we must supplement Eq. �2� with boundary conditions.
Integrating Eq. �2� over some volume V, with boundary �V,
we obtain

�
�V

�fB + D��f� · da = 	
V

sdv , �3�

where da is the normal area element. Suitable boundary con-
ditions are problem dependent.
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After computing the solution to Eq. �2�, we may identify
the source-correction term, �s=−D� ·��f , and we have ef-
fectively solved B ·�f =s+�s. By taking the limit D→0, and
assuming that � ·��f remains finite, we uncover the solution
B ·�f =s.

Note that the solutions to Eq. �1� are not required to be
smooth. Where the differential equation is singular the math-
ematical solution admits a �-function singularity. In contrast,
the solutions to Eq. �2�, and also to Eq. �4� below, are guar-
anteed to be continuous and smooth for nonzero D. So, the
regularization approach suggested here automatically ap-
proximates the continuous solution to Eq. �1�, which we as-
sume is the physically relevant solution in the context of
MHD calculations.

To illustrate, consider a magnetic field in Cartesian co-
ordinates, B0=�� �x�y−�0�z�, where x serves as the ra-
dial coordinate, and y, z are the poloidal, toroidal angles. We
choose a simple integrable field, �0�x�=x2 /2, to give a linear
transform profile, 	–��0�=x. For the source term we
use s=smn�x�cos�my−nz�. The solution to Eq. �1� is
ḡ�x�sin�my−nz�, where ḡ=smn / �	–m−n�, which is singular at
	–=n /m. This solution and its derivative are shown as the
dotted curves in Figs. 1 and 2.

We write the solution to Eq. �2� as a sum of odd and
even components, f =g�x�sin�my−nz�+h�x�cos�my−nz�, and
obtain a coupled pair of second-order, differential equations
for g and h. To be explicit, we use m=2 and n=1 and take
smn�x�=1. A finite difference method is used, with the bound-
ary condition that g= ḡ and h=0 at x=0 and at x=1. The
solutions, g and h, and their derivatives, are shown in Fig. 1.

There is a subtlety here that needs to be recognized. If
the original source term satisfies the solvability conditions,
then the solution is well behaved and no source-correction

term is required. In this case, the term �s vanishes as D
approaches zero. If the source does not satisfy the solvability
conditions, then as D becomes smaller the solution ap-
proaches a singular/pathological limit and �f grows without
bound. In this case, �s remains finite even as D→0, but it is,
in some sense, no larger than required and localized to where
the solvability constraint is violated.

For more complicated geometry and fields, Eq. �2� may
be solved by a variety of numerical methods. For example, a
locally field aligned coordinate grid will accurately resolve
the B ·� operator.8 We make no assumption regarding the
structure of the field, and the approach is equally valid for
integrable magnetic fields, partially chaotic fields, and fields
that are so chaotic they are effectively random. We do not
need to resolve the fractal structure of the chaotic field; it is
only required to resolve the structure of the solution, and
provided D is nonzero, the solution will be smooth.

Magnetic differential equations arise in the iterative so-
lution of the MHD equilibrium equations.9 The ideal force
balance equation is j�B=�p. The iterations proceed by
identifying j�=B��p /B2. Writing j=�B+ j� and insisting
that � · j=0 we obtain a magnetic differential equation for the
parallel current, B ·��=−� · �B��p /B2�. Assuming this
equation can be solved, the magnetic field is updated by
inverting ��B= j. To be consistent with an ideal equilib-
rium, the pressure is adjusted in order to satisfy B ·�p=0.
This closes the Picard-style iterative loop. Further details are
given in Refs. 10 and 11, and some effort has been devoted
to implementing this approach computationally.12

However, this iterative scheme depends on solving two
magnetic differential equations. These equations are singular,
and the difficulties encountered in inverting these equations
described earlier result in such an algorithm being numeri-
cally ill-posed. This is related to the fact that the solutions to
�p= j�B are ill-defined when the fields are chaotic. The
only continuous pressure that is consistent with B ·�p=0 for
chaotic fields is something akin to a devil’s staircase:5 the
pressure-gradient is either discontinuous or zero. The same is
true for the perpendicular current, j��B��p /B2, which
does not have a well defined, nontrivial divergence, and
B ·��=−� · j� cannot be solved.

We shall slightly modify this iterative scheme in order to
remove the problems associated with inverting these two
equations, and thus obtain an algorithm that is both numeri-
cally tractable and transparent, and that will hopefully allow

FIG. 1. Solutions, g�x� and h�x�, and their derivatives for Eq. �2� with
D=10−4.

FIG. 2. Solution g�x� and its derivative for Eq. �4� with D=10−4.
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MHD equilibria to be constructed faithfully even for arbi-
trarily chaotic fields. Consider first the solution to B ·�p=0.
The solvability conditions for this equation are trivially sat-
isfied; however, for chaotic fields �which have structure on
all length scales� the only nontrivial, continuous solutions
have an uncountable infinity of discontinuities in �p.5 This
pathological structure can be removed by introducing small,
nonideal terms.

Recognizing that realistically the transport of the pres-
sure along the magnetic field is not infinitely fast, that the
pressure will relax in both directions along the magnetic field
and so the parallel transport should be modeled by a second-
order differential equation, and that particle collisions, finite-
Larmor radius effects, etc. will result in some small perpen-
dicular transport, a reasonable alternative to B ·�p=0 is the
anisotropic-diffusion equation

� · ��
p + D��p� = Q , �4�

where �
p�bb ·�p and ��p��p−�
p, and Q is a source
term which may be used to drive nontrivial solutions. Non-
trivial solutions may also be forced by inhomogeneous
boundary conditions. As D becomes smaller, the pressure
adapts mores closely to any flux-surfaces that may exist, and
even to the cantori,8 but for nonzero D magnetic islands
smaller than a critical island width, 
w=O�D�1/4, are
inconsequential,13 and the pressure is smooth, even for cha-
otic fields.

Solutions to the anisotropic-diffusion equation may
serve as approximate solutions to magnetic differential equa-
tions. Shown in Fig. 2 are the solutions to Eq. �4� for the
integrable field considered earlier. To approximate the solu-
tions to Eq. �1� using Eq. �4�, we must take Q=B ·��s /B2�,
and it is sufficient to write f =g�x�sin�my−nz�.

In fact, for slightly perturbed fields, Eq. �1� can be trans-
formed to an equation that is similar in form to Eq. �4�.
Consider a magnetic field given by B=B0+�B. The out-
standing effect of the perturbation is to introduce a radial
derivative, so that B ·��B0 ·�+�Bx�x. Now consider apply-
ing this operator once more to Eq. �1�

�B · ���B · �f� = B · �s . �5�

Realizing that for �=0 the solution is singular, and so the
highest order radial derivative of f will dominate, and by
discarding small terms, this may be approximated by

�B0 · ���B0 · ��f + ��Bx�2�xx
2 f = B0 · �s �6�

which, after a suitable averaging operation, is essentially an
anisotropic-diffusion equation, and is nonsingular. While this
is not a rigorous proof, it suggests that the effect of a small
radial field, ��Bx�2�xx

2 f , is to induce a small diffusion of f
across the unperturbed flux-surfaces. If one assumes that the
perturbed field lines are stochastic, and then assumes that the
degree of stochasticity is sufficient so that the radial devia-
tion of the field lines is effectively random, a quasilinear
expression for the radial diffusion coefficient could be
derived.14,15 If one replaces the radial diffusion term,
��Bx�2�xx

2 f , with −�2f , then the usual resonance broadening
heuristic is obtained, fm,n= �	–m−n�sm,n / ��	–m−n�2+�2�,

where we have employed a Fourier representation for f and
s, and used B0 ·���	–m−n�.

Including a perturbed radial field appears to have elimi-
nated the singularity, however, Eq. �5� is no less and no more
singular than Eq. �1�. The resonance broadening described by
Eq. �6� has been achieved by somewhat vaguely discarding
small terms �arguing that the perturbation terms are small
and that the field is almost integrable� and/or by averaging
�arguing that the perturbation is sufficient to cause strong
field line chaos�. This is equivalent to altering the linear op-
erator that acts upon f . It is not obvious how well solutions
to Eq. �6� will approximate solutions to Eq. �1� for arbitrarily
chaotic fields. The singularities in the B ·� have not been
removed by the introduction of perturbed radial or chaotic
fields. The singularities are associated with the existence of
periodic orbits, and periodic orbits are guaranteed to survive
perturbation �for any system with shear� by the Poincaré–
Birkhoff theorem.3 Magnetic differential equations are guar-
anteed to be singular for toroidal magnetic fields, regardless
of the degree of chaos.

From a numerical perspective, Eq. �4� has several advan-
tages over Eq. �6�. Equation �6� would not regularize the
singularities when the field is integrable, whereas the reso-
nance broadening in Eq. �4� is explicit and transparent, and
independent of the degree of chaos. To exploit Eq. �6� nu-
merically it is required to represent the given field as a small
perturbation to a “nearby”-integrable field, as this determines
the magnitude of �, but there is some arbitrariness in the
choice of nearby-integrable field across which f is assumed
to be diffusing: if the nearby-integrable field is chosen
poorly, a rather peculiar diffusion process could result. It
would seem that the best method of ensuring that the diffu-
sion perpendicular to the coordinate surfaces was consistent
with a small diffusion perpendicular to the field would be to
use coordinates adapted to the surviving invariant magnetic
surfaces and cantori, i.e., chaotic-coordinates.16 Indeed, the
construction of chaotic-coordinates allows Eq. �4� to be
solved analytically: assuming that p takes the form p= p���,
where � labels the coordinate surfaces, and ignoring the
source for simplicity, the solution to Eq. �4� is given by
p�� �
+DG�−1, where 
 is the squared field-line flux across
the coordinate surfaces and G is an average metric quantity.16

The second magnetic differential equation that arises is
for the parallel current. Either to ensure that the solvability
conditions are satisfied, or to allow small pressure gradients
along the magnetic field, which would be the case if Eq. �4�
is used, we must include additional terms to the force bal-
ance equation.17 Generally, we can write

j � B = �p + u� � B + �B . �7�

The �B term in Eq. �7� does not contribute to perpendicular
force balance. If the pressure satisfies Eq. �4�, then this term
is small, ��D. The parallel current is given by the magnetic
differential equation

B · �� = − � · �B � �p/B2� − � · u�. �8�

We may solve this, and compute the additional perpen-
dicular current u� by solving instead the regularized equa-
tion
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B · �� + D � · ��� = − � · �B � �p/B2� �9�

and then identify D� ·���=� ·u�. This may be integrated
to obtain u�=D���. There is an arbitrary integration term,
��h, but this may be set to zero. The operator that acts on
� in Eq. �9� is no longer singular, and this removes the
�-function solution to the parallel current that would other-
wise generally be present.18

As for the boundary conditions that are required to
supplement Eq. �9�, consider for example a region bounded
by two irrational flux-surfaces �so-called KAM surfaces�, on
which B ·n=0, where n is normal to the boundary surfaces.
It is sufficient to supply Dirichlet boundary conditions, and �
on the computational boundary may be specified arbitrarily.
A natural choice is constructed as follows. On the irrational
surfaces the operator B ·� is nonsingular, and
B ·��=−� · �B��p /B2� is readily inverted to solve for �,
for example by constructing straight-field line
coordinates.19,20 The boundary condition may be taken as
this solution plus any constant.

We have presented a method that �i� allows the solutions
of magnetic differential equations to be approximated arbi-
trarily closely; �ii� self-consistently provides a small, source-
correction term where it is required; and �iii� can be em-
ployed for general magnetic fields without making any
assumptions regarding the chaotic structure of the field.

The D� ·�� term is a smoothing operator, with a scale
length controlled by D. This term resolves the singularities
that would otherwise occur. Though the inclusion of this
term is somewhat arbitrary, the resultant source-correction
term should not be thought of as artificial. For example, if
j�=B��p /B2 is not consistent with � · j=0, then there must
be some additional force that drives a perpendicular current.
To the extent that this additional force is small and localized,
the final result is likely to be somewhat insensitive to the
precise details, as long as the singular structure is removed.

Any number of smoothing operators could be added, and
the form of the operator will determine the form of the ad-
ditional force. Conceivably, one could choose an operator
that mimics the effect of a small plasma velocity, for ex-
ample. As shown in Fig. 1, the advection-diffusion equation
couples functions of different symmetry: while this may be
acceptable for modeling non up-down symmetric devices,
the additional force in this case would violate stellarator

symmetry. The anisotropic-diffusion equation in contrast pre-
serves any symmetry that may be present.

As D becomes smaller and the regularization term be-
comes weaker, the parallel currents etc. will become increas-
ingly localized and so the numerical resolution required to
resolve these structures will increase. An operator with
higher derivatives would have the effect of further localizing,
for a given D, the source-correction term to regions where
the solvability constraint was violated, but again this would
come at the expense of requiring enhanced numerical reso-
lution to resolve the increasingly localized structures. In any
case, provided D is small, the source correction term arising
from the D� ·�� term will be both small and localized.

We have suggested a modified iterative procedure for
calculating MHD equilibrium solutions. By regularizing the
magnetic differential equations arising for the pressure and
parallel current, the fractal, singular structure of the equilib-
rium solutions is removed. By taking D to be small, we hope
in future to compute a nontrivial, nearly ideal equilibrium
with arbitrarily chaotic fields.
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